Abstract
Simple SummaryStore-operated Ca2+ entry (SOCE) has long been known to regulate the differentiation and effector functions of T cells as well as to be instrumental to the ability of cytotoxic T lymphocytes to target cancer cells. Currently, no information is available regarding the expression and function of SOCE in tumour-infiltrating lymphocytes (TILs) that have been expanded in vitro for adoptive cell therapy (ACT). This study provides the first evidence that SOCE is up-regulated in ex vivo-expanded TILs from metastatic colorectal cancer (mCRC) patients. The up-regulation of SOCE mainly depends on diacylglycerol kinase (DGK), which prevents the protein kinase C-dependent inhibition of Ca2+ entry in normal T cells. Of note, the pharmacological blockade of SOCE with the selective inhibitor, BTP-2, during target cell killing significantly increases cytotoxic activity at low TIL density, i.e., when TILs-mediated cancer cell death is rarer. This study, albeit preliminary, could lay the foundation to propose an alternative strategy to effect ACT. It has been shown that ex vivo-expanded TILs did not improve the disease-free survival rate in mCRC patients. Our results strongly suggest that pre-treating autologous TILs with a SOCE or DGK inhibitor before being infused into the patient could improve their cytotoxic activity against cancer cells.(1) Background: Store-operated Ca2+ entry (SOCE) drives the cytotoxic activity of cytotoxic T lymphocytes (CTLs) against cancer cells. However, SOCE can be enhanced in cancer cells due to an increase in the expression and/or function of its underlying molecular components, i.e., STIM1 and Orai1. Herein, we evaluated the SOCE expression and function in tumour-infiltrating lymphocytes (TILs) from metastatic colorectal cancer (mCRC) patients. (2) Methods: Functional studies were conducted in TILs expanded ex vivo from CRC liver metastases. Peripheral blood T cells from healthy donors (hPBTs) and mCRC patients (cPBTs) were used as controls. (3) Results: SOCE amplitude is enhanced in TILs compared to hPBTs and cPBTs, but the STIM1 protein is only up-regulated in TILs. Pharmacological manipulation showed that the increase in SOCE mainly depends on tonic modulation by diacylglycerol kinase, which prevents the protein kinase C-dependent inhibition of SOCE activity. The larger SOCE caused a stronger Ca2+ response to T-cell receptor stimulation by autologous mCRC cells. Reducing Ca2+ influx with BTP-2 during target cell killing significantly increases cytotoxic activity at low target:effector ratios. (4) Conclusions: SOCE is enhanced in ex vivo-expanded TILs deriving from mCRC patients but decreasing Ca2+ influx with BTP-2 increases cytotoxic activity at a low TIL density.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have