Abstract
It has been suggested that the hippocampal theta rhythm can contribute to memory formation by separating encoding and retrieval of memories into different functional cycles [1]. Herein, we investigate via computer simulations the mechanisms by which storage of spatio-temporal input patterns is achieved by the CA1 microcircuitry. A model of the CA1 microcircuitry is presented using biophysical representations of its major cell types including pyramidal cells and three types of inhibitory interneurons: basket cells, chandelier cells and bistratified cells. Inputs to the network come from the medial septum, entorhinal cortex and CA3 Schaffer collaterals. Patterns of CA3 input are stored via an STDP-type learning rule on the pyramidal cell target synapses. The other inputs provide context and timing information. The model simulates accurately the timing of firing of different hippocampal cell types relative to the theta rhythm and proposes functional roles for the different classes of inhibitory interneurons in the storage and recall of input patterns.
Highlights
Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf
It has been suggested that the hippocampal theta rhythm can contribute to memory formation by separating encoding and retrieval of memories into different functional cycles [1]
We investigate via computer simulations the mechanisms by which storage of spatio-temporal input patterns is achieved by the CA1 microcircuitry
Summary
Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf . Address: 1Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK and 2Division of Neuroscience and Biomedical Systems, University of Glasgow, UK
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.