Abstract

The hippocampal theta rhythm (4–12 Hz) is one of the most important electrophysiological processes in the hippocampus, it participates in cognitive hippocampal functions, such as navigation in space, novelty detection, and declarative memory. We use neural network modeling to study the mechanism of theta rhythm emergence in the CA1 microcircuitry. Our model of the CA1 field includes biophysical representation of major cell types related to the theta rhythm emergence: excitatory pyramidal cells and two types of inhibitory interneurons, PV+ basket cells and oriens lacunosum–moleculare (OLM) cells. The main inputs to the CA1 cells come from the entorhinal cortex via perforant pathway, the CA3 field via Schaffer collaterals, and the medial septum via fimbria–fornix. By computer simulations we investigated the influence of each input, intrinsic parameters of neurons, and connections between neurons on phase coupling between the theta rhythm and the firing of pyramidal, PV+ basket and OLM cells in the CA1. We found that the input from the CA3 field via Schaffercollaterals plays a major role in the formation of phase relations that have been observed in experiments in vivo. The direct input from the medial septum participates in the formation of proper phase relations, but it is not crucial for the production of the theta rhythm in CA1 neural populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.