Abstract

We consider a processor-sharing storage allocation model, which has m primary holding spaces and infinitely many secondary ones, and a single processor servicing the stored items. All of the spaces are numbered and ordered. An arriving customer takes the lowest available space. Dynamic storage allocation and the fragmentation of computer memory are well-known applications of this model. We define the traffic intensity ρ to be λ/μ, where λ is the customers' arrival rate and μ is the service rate of the processor. We study the joint probability distribution of the numbers of occupied primary and secondary spaces. We study the problem in two asymptotic limits: (1) m → ∞ with a fixed ρ < 1, and (2) ρ ↑ 1, m → ∞ with m(1-ρ) = O(1). The asymptotics yield insight into how many secondary spaces tend to be needed, and into the sample paths leading to the occupation of the two types of spaces. We show that the asymptotics lead to accurate numerical approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.