Abstract

With the development of e-commerce and the improvement of logistics requirements, more and more ‘parts-to-picker’ picking systems begin to replace the inefficient ‘picker-to-parts’ picking systems in various scenarios. As the mainstream ‘parts-to-picker’ system, the robotic mobile fulfillment system has been attracting much attention in recent years. In addition to the customer's changing requirements, the rapid response of the picking system to the order is particularly important. In the above context, to seek a breakthrough in the picking system's picking efficiency without increasing the cost of additional equipment, the storage allocation of the pods becomes very important. This article focuses on the dynamic storage allocation of robotic mobile fulfillment system, which has positive theoretical and practical significance. By analyzing the pod storage process of the robotic mobile fulfillment system, a dynamic pod storage allocation model suitable for the robotic mobile fulfillment system is established with the goal of minimizing the pod handling distance. Two dynamic pod storage allocation strategies are proposed for the system. By simulating the picking systems of different scales, the effectiveness of the dynamic storage allocation strategy is verified, which has a certain reference to the operation of the robotic mobile fulfillment system in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.