Abstract

Three-dimensional (3D) simulations of electron beams propagating in high-energy-density plasmas using the quasistatic Particle-in-Cell (PIC) code QuickPIC demonstrate a significant increase in stopping power when beam electrons mutually interact via their wakes. Each beam electron excites a plasma wave wake of wavelength ∼2πc/ω_{pe}, where c is the speed of light and ω_{pe} is the background plasma frequency. We show that a discrete collection of electrons undergoes a beam-plasma-like instability caused by mutual particle-wake interactions that causes electrons to bunch in the beam, even for beam densities n_{b} for which fluid theory breaks down. This bunching enhances the beam's stopping power, which we call "correlated stopping," and the effect increases with the "correlation number" N_{b}≡n_{b}(c/ω_{pe})^{3}. For example, a beam of monoenergetic 9.7 MeV electrons with N_{b}=1/8, in a cold background plasma with n_{e}=10^{26}cm^{-3} (450 g cm^{-3} DT), has a stopping power of 2.28±0.04 times the single-electron value, which increases to 1220±5 for N_{b}=64. The beam also experiences transverse filamentation, which eventually limits the stopping enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call