Abstract

We re-examined the electrical and stoichiometric properties of the Na+-L-lactate cotransporter using highly purified brush-border membrane vesicles prepared from the whole cortex of rabbit kidney. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated Na+ gradient-dependent L-lactate uptake. However, this stimulation reflected catalytic rather than energetic activation as an inside-negative membrane potential did not induce net uphill lactate accumulation in the presence of Na+ but in the absence of a Na+ concentration gradient. Additional evidence for electroneutrality of the cotransporter was the finding that, under voltage-clamped conditions, L-lactate flux was a hyperbolic function of extravesicular Na+ concentration with a Hill coefficient (n) of 1.0. Moreover, the plot of V/[Na+]n versus V was linear for n = 1, indicating that one Na+ ion is co-transported with an anionic lactate1- molecule. Finally, addition of L-lactate to vesicles under Na+ equilibrium conditions failed to generate an inside-positive membrane potential as monitored by 3,3'-dipropylthiodicarbocyanine iodide fluorescence quenching, arguing against Na+-L-lactate cotransport by an electrogenic process. Taken together, these data indicate that the luminal Na+-L-lactate co-transporter is electroneutral with a stoichiometry of 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.