Abstract
Recently, an organic cation:H+ antiport was selectively identified on the sinusoidal domain of rat liver with the use of the endogenous organic cation N1-methylnicotinamide (NMN). Absence of NMN+:H+ exchange on canalicular membrane suggested that this transport process was primarily involved in organic cation uptake, leaving the mechanism(s) for organic cation secretion into bile unknown. To further define hepatic organic cation transport, we examined the characteristics of tetraethylammonium (TEA) transport in basolateral (blLPM) and canalicular (cLPM) rat liver plasma membrane vesicles. In cLPM vesicles, under voltage-clamped conditions, an outwardly directed H+ gradient stimulated [14C]TEA uptake compared with [14C]TEA uptake under pH-equilibrated conditions, consistent with electroneutral TEA:H+ exchange. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone had no effect on [14C]TEA uptake, demonstrating that pH-dependent [14C]TEA uptake was not the result of a H+ diffusion potential. In the absence of a pH gradient, the intravesicular presence of TEA trans-stimulated uptake of [14C]TEA. Procainamide ethobromide (PAEB), vecuronium, and tributylmethylammonium (TBuMA), organic cations selectively excreted in bile, cis-inhibited pH-dependent TEA uptake. In contrast, in blLPM vesicles, no pH gradient-dependent [14C]TEA uptake was demonstrated. Instead, basolateral [14C]TEA uptake was significantly stimulated by a valinomycin-induced intravesicular-negative K+ diffusion potential. Basolateral [14C]TEA uptake was also cis-inhibited by PAEB, vecuronium, and TBuMA, but not by NMN. Conversely, PAEB, vecuronium, and TBuMA had no effect on basolateral pH-dependent [3H]NMN uptake. These findings suggest that organic cation transport, with TEA as a model quaternary amine, across the canalicular membrane is driven by an electroneutral organic cation:H+ exchange and that the transport of certain organic cations across the basolateral membrane is via a carrier-mediated system stimulated by an inside-negative membrane potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.