Abstract

Using numerical integration of the Boltzmann transport equation, depth distributions of recoil-implanted Ga and N atoms in Mg-implanted GaN are studied. Mg implantation into GaN is found to produce significant nonuniform stoichiometric distribution as a consequence of the recoil process, as compared to other III–V materials of GaP, GaAs and GaSb. Our calculation also indicates that the stoichiometric imbalance introduced by Mg implantation in GaN is insensitive to the changes in the implanted ion energy and the atom density of the target material. These results suggest that stoichiometric imbalance may be one of the principal reasons why the electrical activation of implanted Mg acceptors in GaN is rather difficult as compared to that in other III–V semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.