Abstract
For decades in China, carbon neutrality policies have spurred the establishment of northern margin mangroves as artificial blue carbon ecosystems. However, there has been limited research on the impact of plantation and invasion on the stocks and sources of soil carbon and nitrogen in rehabilitated coastal wetlands. Non-native Kandelia obovata afforestation began on Ximen Island, Zhejiang, China, where Spartina alterniflora invasion had also occurred decades ago. Soil cores were collected from both mangrove and salt marsh habitats with depths from 0 to 50 cm and were analyzed for total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), and the isotope of carbon and nitrogen in sediments. The results indicated that there were no significant differences in the TC, SOC, and C/N ratio between the K. obovata and the S. alterniflora, but there were significant differences in TN, isotope δ13C, and δ15N. The SOC content of both ecosystems in the 0–20 cm layer was significantly higher than that in the 30–50 cm layer. Our study has shown that the main sources of carbon and nitrogen for mangroves and salt marshes are different, especially under the impact of external factors, such as tidal waves and aquaculture. These findings provide insight into the ecological functioning of subtropical coastal wetlands and an understanding of the biogeochemical cycles of northern margin mangrove ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.