Abstract

Over the years, high-dimensional, noisy, and time-varying natures of the stock markets are analyzed to carry out accurate prediction. Particularly, speculators and investors are understandably eager to accurately predict stock price since millions of dollars flow through the stock markets. At this point, soft computing models have empowered them to capture the data patterns and characteristics of stock markets. However, one of the open problems in soft computing models is how to systematically determine architecture of models for given applications. In this study, Harmony Search is utilized to optimize the architecture of Neural Network, Jordan Recurrent Neural Network, Extreme Learning Machine, Recurrent Extreme Learning Machine, Generalized Linear Model, Regression Tree, and Gaussian Process Regression for 1-, 2-, 3-, 5-, 7-, and 10-day-ahead stock price prediction. The experimental results show worthy findings of stock market behavior over different prediction terms and stocks. This study also helps researchers understand which prediction model performed the best and how different conditions affect the prediction accuracy of the models. Proposed hybrid models can be successfully used by speculators and investors to make the investment or to hedge against potential risk in stock markets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.