Abstract
We will examine stochastic weight update in the backpropagation algorithm on feed-forward neural networks. It was introduced by Salvetti and Wilamowski in 1994 in order to improve probability of convergence and speed of convergence. However, this update method has also one another quality, its implementation is simple for arbitrary network topology. In stochastic weight update scenario, constant number of weights is randomly selected and updated. This is in contrast to classical ordered update, where always all weights are updated. We will describe exact implementation, and present example results on toy-task data with feed-forward neural network topology. Stochastic weight update is suitable to replace classical ordered update without any penalty on implementation complexity and with good chance without penalty on quality of convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.