Abstract
This paper investigates new learning algorithms (LF I and LF II) based on Lyapunov function for the training of feedforward neural networks. It is observed that such algorithms have interesting parallel with the popular backpropagation (BP) algorithm where the fixed learning rate is replaced by an adaptive learning rate computed using convergence theorem based on Lyapunov stability theory. LF II, a modified version of LF I, has been introduced with an aim to avoid local minima. This modification also helps in improving the convergence speed in some cases. Conditions for achieving global minimum for these kind of algorithms have been studied in detail. The performances of the proposed algorithms are compared with BP algorithm and extended Kalman filtering (EKF) on three bench-mark function approximation problems: XOR, 3-bit parity, and 8-3 encoder. The comparisons are made in terms of number of learning iterations and computational time required for convergence. It is found that the proposed algorithms (LF I and II) are much faster in convergence than other two algorithms to attain same accuracy. Finally, the comparison is made on a complex two-dimensional (2-D) Gabor function and effect of adaptive learning rate for faster convergence is verified. In a nutshell, the investigations made in this paper help us better understand the learning procedure of feedforward neural networks in terms of adaptive learning rate, convergence speed, and local minima.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.