Abstract

Although the partial differential equations that describe the physical climate system are deterministic, there is an important reason why the computational representations of these equations should be stochastic: such representations better respect the scaling symmetries of these underlying differential equations, as described in this Perspective. This Perspective also surveys the ways in which introducing stochasticity into the parameterized representations of subgrid processes in comprehensive weather and climate models has improved the skill of forecasts and has reduced systematic model error, notably in simulating persistent flow anomalies. The pertinence of stochasticity is also discussed in the context of the question of how many bits of useful information are contained in the numerical representations of variables, a question that is critical for the design of next-generation climate models. The accuracy of fluid simulation may be further increased if future-generation supercomputer hardware becomes partially stochastic. Although the differential equations that describe the physical climate system are deterministic, there are reasons, both theoretical and practical, why computational representations of these equations should be stochastic. This Perspective surveys the benefits of stochastic modelling of weather and climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.