Abstract

We present a proximal algorithm that performs a variational recursion on the space of joint probability measures to propagate the stochastic uncertainties in power system dynamics over high dimensional state space. The proposed algorithm takes advantage of the exact nonlinearity structures in the trajectory-level dynamics of the networked power systems, and is nonparametric. Lifting the dynamics to the space of probability measures allows us to design a scalable algorithm that obviates gridding the underlying high dimensional state space which is computationally prohibitive. The proximal recursion implements a generalized infinite dimensional gradient flow, and evolves probability-weighted scattered point clouds. We clarify the theoretical nuances and algorithmic details specific to the power system nonlinearities, and provide illustrative numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.