Abstract
The paper considers learning systems as optimisation systems with dynamical information constraints, and general optimality conditions are derived using the duality between the space of utility functions and probability measures. The increasing dynamics of the constraints is used to parametrise the optimal solutions which form a trajectory in the space of probability measures. Stochastic processes following such trajectories describe systems achieving the maximum possible utility gain with respect to a given information. The theory is discussed on examples for finite and uncountable sets and in relation to existing applications and cognitive models of learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.