Abstract

The track irregularity spectrum of longitudinally connected ballastless track (LCBT)-bridge systems of high-speed railway was proposed in this paper. First, a simulation model of an LCBT-continuous girder bridge was established by considering the influences of approach bridges and subgrade with track structure. Further, a large number of sample analyses were carried out by taking into account the uncertainty of LCBT-bridge systems and stochastic behaviors of ground motions based on the simulation model. The damage laws of residual deformation of track-bridge system after earthquake actions were studied. Then, an interlayer deformation coordination relationship (IDCR) considering the track irregularity caused by earthquake-induced damage of bearings was developed, and the superposed track irregularity samples were obtained. Finally, by using the improved Blackman–Turkey method and Levenberg–Marquardt algorithm, the LCBT irregularity spectrum, track irregularity spectrogram, track irregularity limit spectrum, and a fitting formula for the track irregularity spectrum on a bridge after the action of earthquakes were obtained. Results obtained from the fitting formula and IDCR were compared, and they indicated that tracks undergone significant high-frequency irregularity diseases after the earthquake action. It was found that the track irregularity spectrum could be roughly divided into three ranges: high-, medium- and low-frequency wavebands. Consequently, this led to an application of a three-segment power function for the fitting of the track irregularity spectrum after the earthquake action. The track irregularity spectrum after the action of earthquakes provides an important theoretical basis for the establishment of seismic design methods for high-speed railway bridges based on the traffic safety performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call