Abstract

The aim of this article is to provide an overview of polynomial chaos (PC) based methods for the statistical analysis of transmission lines. The underlying idea of PC is to represent stochastic line voltages and currents as expansions of predefined orthogonal polynomials. The determination of the expansion coefficients allows obtaining pertinent statistical information and is generally much faster than running, e.g., a Monte Carlo (MC) analysis. There exist several approaches to calculate the PC expansion coefficients. The article briefly reviews virtually all existing methods, whilst focusing on the popular and accurate stochastic Galerkin (SG) method as well as on the recent, more efficient and non-intrusive formulation of the so-called stochastic testing (ST) method. These two techniques are introduced by way of a simple illustrative example, i.e., a single-wire line running above a ground plane. Numerical comparisons in terms of accuracy and efficiency are also provided for a four-wire line with nonlinear terminations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.