Abstract

This work focuses on the representation of model-form uncertainties in molecular dynamics simulations in various statistical ensembles. In prior contributions, the modeling of such uncertainties was formalized and applied to quantify the impact of, and the error generated by, pair-potential selection in the microcanonical ensemble (NVE). In this work, we extend this formulation and present a linear-subspace reduced-order model for the canonical (NVT) and isobaric (NPT) ensembles. The symplectic reduced-order basis is randomized on the tangent space of the Stiefel manifold to provide topological relationships and capture model-form uncertainty. Using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), we assess the relevance of these stochastic reduced-order atomistic models on canonical problems involving a Lennard-Jones fluid and an argon crystal melt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.