Abstract

We investigate the stabilization of unstable multidimensional partially observed single-sensor and multi-sensor linear systems driven by unbounded noise and controlled over discrete noiseless channels under fixed-rate information constraints. Stability is achieved under fixed-rate communication requirements that are asymptotically tight in the limit of large sampling periods. Through the use of similarity transforms, sampling and random-time drift conditions we obtain a coding and control policy leading to the existence of a unique invariant distribution and finite second moment for the sampled state. We use a vector stabilization scheme in which all modes of the linear system visit a compact set together infinitely often. We prove tight necessary and sufficient conditions for the general multi-sensor case under an assumption related to the Jordan form structure of such systems. In the absence of this assumption, we give sufficient conditions for stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.