Abstract

Stabilization of nonstationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in the information theory and control theory literature since the 1970s, with a renewed interest in the past decade. There have also been studies on noncausal and causal coding of unstable/nonstationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (nonstationary) possibly multidimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call