Abstract
The present study deals with structural sensitivity of dynamic response having uncertainties in design parameters subjected to random earthquake loading. Earthquake is modeled as stationary random process defined by Kanai–Tajimi power spectral density. The uncertain design parameters are modeled as homogeneous Gaussian process and discretized through 3D local averaging. Subsequently the Cholesky decomposition of respective co-variance matrix is used to simulate random values of design parameters. The Neumann expansion blended with Monte Carlo simulation (NE-MCS) is explored for computing response sensitivity in frequency domain. Application examples related to a building frame and a gravity dam are presented serving to validate the NE-MCS technique in terms of its accuracy and effectiveness compared to direct Monte Carlo simulation and perturbation method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.