Abstract

We propose a solution method for the large-scale stochastic unit commitment (SUC) problem with weekly-dispatched energy storage and significant weather-dependent stochastic generating capacity. Weekly storage facilities that mostly charge during weekends and discharge during weekdays require a weekly scheduling of generating units, which result in a large-scale optimization problem. This SUC problem is formulated as a two-stage stochastic model and we use the conditional value-at-risk as a risk measure. Using a Benders framework, the proposed solution method decomposes the problem into a mixed-integer linear master problem and linear and continuous subproblems. The master problem corresponds to the first-stage decisions throughout the week and includes all the commitment (binary) variables and their corresponding constraints. The subproblems correspond to the actual dispatch of the generating units on a weekly basis. Based on the success of column-and-constraint generation algorithms to solve robust optimization problems, we improve the low communication between the master problem and the subproblems in the standard Benders decomposition by adding primal variables and constraints from the subproblems to the master problem, which provides a better approximation of the recourse function. Our computational experiments demonstrate the effectiveness of the proposed decomposition method using an instance of the South Carolina synthetic system with 90 generating units under 40 scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.