Abstract
We introduce a notion of stochastic entropic solution à la Kruzkov, but with Ito's calculus replacing deterministic calculus. This results in a rich family of stochastic inequalities defining what we mean by a solution. A uniqueness theory is then developed following a stochastic generalization of L 1 contraction estimate. An existence theory is also developed by adapting compensated compactness arguments to stochastic setting. We use approximating models of vanishing viscosity solution type for the construction. While the uniqueness result applies to any spatial dimensions, the existence result, in the absence of special structural assumptions, is restricted to one spatial dimension only.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have