Abstract

We introduce a notion of stochastic entropic solution à la Kruzkov, but with Ito's calculus replacing deterministic calculus. This results in a rich family of stochastic inequalities defining what we mean by a solution. A uniqueness theory is then developed following a stochastic generalization of L 1 contraction estimate. An existence theory is also developed by adapting compensated compactness arguments to stochastic setting. We use approximating models of vanishing viscosity solution type for the construction. While the uniqueness result applies to any spatial dimensions, the existence result, in the absence of special structural assumptions, is restricted to one spatial dimension only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.