Abstract

This paper reports the stochastic resonance (SR) phenomenon with memory effects for a Brownian particle in a potential whose shape is subjected to deformation. We model the deformation in the system by the Remoissenet-Peyrard potential and the memory effects by the time-delayed feedback. The question of the possible influence of time-delayed feedback on the occurrence of SR is then of our interest. We examine numerically the effect of feedback strength as well as time delay on SR phenomenon in terms of hysteresis loop area. It is found that time-delayed feedback has a significant effect on SR and can induce double resonances in the system. We show that the properties of SR are varying, depending on interdependence between feedback strength, time delay and shape parameter. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.