Abstract

We present an analytic investigation of the signal-to-noise ratio of output intensity in a loss-noise model of a single-mode laser system driven by the colored pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts. Stochastic resonance (SR) in the curve of signal-to-noise ratio R versus the pump noise self-correlation time τ,signal frequency Ω,and cross-correlation coefficient between the real and imaginary parts of the quantum noise λq are found. It extends the conclusion of the typical SR,that is, \!there is a maximum in the curve of R vs noise intensity\". Moreover,we detect that,when the parameter Ω increases,the shape of the Rτ curve will exhibit a change process of multiform SR: the curve experienced from simulta neous existence of resonances and suppressions to single-peak SR and finally to the monotonous rise. And when the parameter τincreases,the shape of theRΩcurve also exhibit a change process of multiform SR: the curve experienced from the monotonous rise to the simultaneous existence of resonances and suppressions and finally to the monotonous descending. For the Rλq curve,it appears an acute single-peak form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.