Abstract

We discuss stochastic resonance in a biased linear quantum system that is subject to multiplicative and additive noises. Starting from a microscopic system-reservoir Hamiltonian, we derive a c-number analogue of the generalized Langevin equation. The developed approach puts forth a quantum mechanical generalization of the "Kubo type" oscillator which is a linear system. Such a system is often used in the literature to study various phenomena in nonequilibrium systems via a particular interaction between system and the external noise. Our analytical results proposed here have the ability to reveal the role of external noise and vis-a-vis the mechanisms and detection of subtle underlying signatures of the stochastic resonance behavior in a linear system. In our development, we show that only when the external noise possesses a "finite correlation time" the quantum effect begins to appear. We observe that the quantum effect enhances the resonance in comparison to the classical one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call