Abstract

Noise widely exists in the nervous system, and plays an extremely important role in the information processing of the nervous system, which can enhance or weaken the ability of the nervous system to process information. Nerve cells exist in complex and changeable electromagnetic fields, and their potential changes are significantly regulated by electromagnetic induction. In response to this, first, a memristor is used to simulate the electromagnetic field environment where the nervous system is located, when using different weak periodic signals as the input of the neuron system, the rich stochastic resonance behavior of the FitzHugh–Nagumo neuron system is analyzed under the drive of phase noise. Second, taking the amplitude, period and intensity of phase noise as the main change parameters, and the changes of the parameters of the memristor and the period of the external signal as auxiliary conditions, the stochastic resonance dynamics analysis is carried out from three perspectives: the amplitude and period of phase noise, the amplitude and intensity of phase noise and the intensity and period of phase noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call