Abstract

This paper presents a stochastic planning algorithm to plan an operation of a multi-microgrid (MMG) in an electricity market considering the integration of stochastic renewable energy resources (RERs). The proposed planning algorithm investigates the optimal operation of resources (i.e., wind turbine (WT), fuel cell (FC), Electrolyzer, photovoltaic (PV) panel, and microturbine (MT)) and energy storage (ES). Various uncertainties (e.g., the power production of WT, the power production of PV, the departure time of electric vehicle (EV), the arrival time of EV, and the traveled distance of EV) are initially forecasted according to the observed data. The prediction error is estimated by fitting the forecasted data and observed data using a Copula method. A Cournot equilibrium and game theory (GT) are applied to model the real-time electricity market and its interactions with the MMG. The proposed algorithm is examined in a sample MMG to determine the operation of uncertain resources and ES. The obtained results are compared with a baseline and the other conventional optimization methods to verify the effectiveness of the proposed algorithm. The obtained results authenticate the importance of modeling the interaction between the MMG and electricity market, especially under the high integration of uncertain RERs, resulting in above 8% cost reduction in the MMG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.