Abstract

We present a stochastic programming framework for a multiple timescale economic dispatch problem to address integration of renewable energy resources into power systems. This framework allows certain slow-response energy resources to be controlled at an hourly timescale, while fast-response resources, including renewable resources, and related network decisions can be controlled at a sub-hourly timescale. To this end, we study two models motivated by actual scheduling practices of system operators. Using an external simulator as driver for sub-hourly wind generation, we optimize these economic dispatch models using stochastic decomposition, a sample-based approach for stochastic programming. Computational experiments, conducted on the IEEE-RTS96 system and the Illinois system, reveal that optimization with sub-hourly dispatch not only results in lower expected operational costs, but also predicts these costs with far greater accuracy than with models allowing only hourly dispatch. Our results also demonstrate that when compared with standard approaches using the extensive formulation of stochastic programming, the sequential sampling approach of stochastic decomposition provides better predictions with much less computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.