Abstract

The synthesis of optical fields that follows a stochastic process and whose statistical mean values generate the self-imaging-revivals effect is analyzed. A sufficient condition for optical fields to exhibit the self-imaging effect occurs when the frequency representation is located on the Montgomery’s rings. The study is performed by implementing stationary random fluctuations on the Montgomery’s rings of additive and multiplicative types. The additive noise is of the stochastic radial walk type with zero mean. Multiplicative noise generates stochastic angular fluctuations in the rings and is implemented using the Karhunen–Loève theorem. The modal representation implicit in the theorem is obtained by interpreting the self-imaging planes as an optical cavity, assuring the statistical periodicity of the noise. A time consonance of the random fluctuations for each ring allows to determine the revivals period for the self-imaging optical fields. The model is corroborated by computer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.