Abstract

Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments, ranging from precision measurements, laser technologies to quantum control of mechanical motion. The dissipative photon loss via absorption, present to some extent in any optical cavity, is known to introduce thermo-optical effects and thereby impose fundamental limits on precision measurements. Here, we theoretically and experimentally reveal that such dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field, leading to the intracavity field fluctuations to be squashed or antisquashed. Strikingly, this modifies the optical cavity susceptibility in coherent response measurements and causes excess noise and correlations in incoherent interferometric optomechanical measurements using a cavity. We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavitiess at both cryogenic temperature (approximately 8 K) and ambient conditions. The dissipative feedback introduces effective modifications to the optical cavity linewidth and the optomechanical scattering rate and gives rise to excess imprecision noise in the interferometric quantum measurement of mechanical motion. Such dissipative feedback differs fundamentally from a quantum nondemolition feedback, e.g., optical Kerr squeezing. The dissipative feedback itself always results in an antisqueezed out-of-loop optical field, while it can enhance the coexisting Kerr squeezing under certain conditions. Our result has wide-ranging implications for future dissipation engineering, such as dissipation enhanced sideband cooling and Kerr squeezing, quantum frequency conversion, and nonreciprocity in photonic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.