Abstract
Within the concept of simulation approaches for manufacturing-induced imperfections of composite structures, this work proposes modeling frameworks for the consideration of stochastic deviations concerning the yarns of textile composite materials. The random distortion of a yarn’s cross-section, is addressed by flexible 1D Fourier-based random fields, with the potential to be calibated from measurements of the deviations from the nominal yarn shape and their statistical characteristics. Furthermore, a Kriging-based modeling approach is presented, able to randomize any nominal yarn path in short or long range problems, considering data for the correlation and variance in a straightforward manner. The effects of defects due to stochastic yarn distortion and waviness, are investigated by simulating a forward uncertainty propagation problem of a triaxially braided composite material. The response variability concerning stiffness and strength for different uncertainty levels is highlighted, while several comments are offered regarding numerical issues and potential surrogate modeling techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.