Abstract

Several stochastic models, with various degrees of complexity, have been proposed to model the neuronal activity from different parts of the human brain. In this article, we use a simple Ornstein-Uhlenbeck process (OUP) to model the spike activity recorded from the subthalamic nucleus of patients suffering from Parkinson's disease at the time of implantation of the electrodes for deep brain stimulation. From the recorded data, which contains information about the spike times of a single neuron, we identify and extract the model parameters of the OUP. We then use these parameters to numerically simulate the inter-spike intervals and the voltage across the neuron membrane. We finally assess how well the proposed mathematical model fits to the measured data and compare it with other commonly adopted stochastic models. We show an excellent agreement between the computer-generated data according to the OUP model and the measured one, as well as the superiority of the OUP model when compared to the Poisson process model and the random walk model; thus, establishing the validity of the OUP as a simple yet biologically plausible model of the neuronal activity recorded from the subthalamic nucleus of Parkinson's disease patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.