Abstract

A stochastic field theory approach is applied to a coarse-grained polymer model that will enable studies of polymer behavior under non-equilibrium conditions. This article is focused on the validation of the new model in comparison with explicit Langevin equation simulations under conditions with analytical solutions. The polymers are modeled as Hookean dumbbells in one dimension, without including hydrodynamic interactions and polymer-polymer interactions. Stochastic moment equations are derived from full field theory. The accuracy of the field theory and moment equations is quantified using autocorrelation functions. The full field theory is only accurate for a large number of polymers due to keeping track of rare occurrences of polymers with a large stretch. The moment equations do not have this error because they do not explicitly track these configurations. The accuracy of both methods depends on the spatial degree of discretization. The timescale of decorrelation over length scales bigger than the spatial discretization is accurate, while there is an error over the scale of single mesh points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call