Abstract
We define stochastic integrals of Banach valued random functions w.r.t. compensated Poisson random measures. Different notions of stochastic integrals are introduced and sufficient conditions for their existence are established. These generalize, for the case where integration is performed w.r.t. compensated Poisson random measures, the notion of stochastic integrals of real valued random functions introduced in Ikeda and Watanabe (1989) [Stochastic Differential Equations and Diffusion Processes (second edition), North-Holland Mathematical Library, Vol. 24, North Holland Publishing Company, Amsterdam/Oxford/New York.], (in a different way) in Bensoussan and Lions (1982) [Contróle impulsionnel et inquations quasi variationnelles. (French) [Impulse control and quasivariational inequalities] Méthodes Mathématiques de l'Informatique [Mathematical Methods of Information Science], Vol. 11. (Gauthier-Villars, Paris), and Skorohod, A.V. (1965) [Studies in the theory of random processes (Addison-Wesley Publishing Company, Inc, Reading, MA), Translated from the Russian by Scripta Technica, Inc. ], to the case of Banach valued random functions. The relation between these two different notions of stochastic integrals is also discussed here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.