Abstract

A nonlinear stochastic evolution equation in Hilbert space with generalized additive white noise is considered. A concept of stochastic mertial manifold is introduced, defined as a random manifold depending on time, which is finite dimensional, invariant for the dynamic, and attracts exponentially fast all the trajectories as t → ∞. Under the classical spectral gap condition of the deterministic theory, the existence of a stochastic inertial manifold is proved. It is obtained as the solution of a stochastic partial differential equation of degenerate parabolic type, studied by a variant of Bernstein method. A result of existence and uniqueness of a stationary inertial manifold is also proved; the stationary inertial manifold contains the random attractor, introduced in previous works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.