Abstract

We determine a $q\to 1$ limit of the two-dimensional $q$-Whittaker driven particle system on the torus studied previously in [Corwin-Toninelli, arXiv:1509.01605]. This has an interpretation as a $(2+1)$-dimensional stochastic interface growth model, that is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the $(2+1)$-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in $(2+1)$-dimension is irrelevant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call