Abstract

The Kardar-Parisi-Zhang (KPZ) equation is a stochastic partial differential equation which is ill-posed because the nonlinearity is marginally defined with respect to the roughness of the forcing noise. However, its Cole-Hopf solution, defined as the logarithm of the solution of the linear stochastic heat equation (SHE) with a multiplicative noise, is a mathematically well-defined object. In fact, Hairer [13] has recently proved that the solution of SHE can actually be derived through the Cole-Hopf transform of the solution of the KPZ equation with a suitable renormalization under periodic boundary conditions. This transformation is unfortunately not well adapted to studying the invariant measures of these Markov processes. The present paper introduces a different type of regularization for the KPZ equation on the whole line $\mathbb{R}$ or under periodic boundary conditions, which is appropriate from the viewpoint of studying the invariant measures. The Cole-Hopf transform applied to this equation leads to an SHE with a smeared noise having an extra complicated nonlinear term. Under time average and in the stationary regime, it is shown that this term can be replaced by a simple linear term, so that the limit equation is the linear SHE with an extra linear term with coefficient 1/24. The methods are essentially stochastic analytic: The Wiener-It\^o expansion and a similar method for establishing the Boltzmann-Gibbs principle are used. As a result, it is shown that the distribution of a two-sided geometric Brownian motion with a height shift given by Lebesgue measure is invariant under the evolution determined by the SHE on $\mathbb{R}$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call