Abstract
This paper develops a stochastic gradient-based optimization model for traffic signal control with bounds on network-level vehicular energy consumption. The signal control problem is formulated as a mixed-integer linear mathematical program, which incorporates inequality constraints to limit the total energy consumption in the network. The developed stochastic gradient approximation algorithm provides a near-optimal solution to the non-convex optimization problem. To account for the energy consumption constraints, a penalty function method leveraging the pseudo gradient estimation technique is developed. Empirical results from a signalized arterial street show that it is possible to achieve optimized signal settings at the desired energy consumption bound without compromising delay. Further, we report the sensitivity of the energy bounds to the mobility metrics-system delay. Our novel gradient-approximation-based solution technique offers a functional and feasible way to accommodate non-convex energy consumption bounds within a signal control optimization model to achieve maximal mobility with minimal energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.