Abstract

In this work, we consider an initial boundary-value problem for a stochastic evolution equation with Riesz-fractional spatial derivative and white noise on the half-line,{ut(x,t)=Dxαu(x,t)+Nu(x,t)+B˙(x,t),x>0,t∈[0,T],u(x,0)=u0(x),x>0,ux(0,t)=g1(t),t∈[0,T], where Dxα is the Riesz-fractional derivative, α∈(2,3), N is a Lipschitzian operator and B˙(x,t) is the white noise. To construct the integral representation of solutions we use the Fokas method and Picard scheme to prove existence and uniqueness. Moreover, Monte Carlo methods are implemented to approximate solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.