Abstract

Existence and uniqueness theorems are proved for a general class of stochastic linear abstract evolution equations, with a general type of stochastic forcing term. The abstract evolution equation is modeled using an evolution operator (or 2-parameter semigroup) approach and this includes linear partial differential equations and linear differential delay equations. The stochastic forcing term is modeled by defining an Itô stochastic integral with respect to a Hilbert space-valued orthogonal increments process, which can be used to model both Gaussian and non-Gaussian white noise processes. The theory is illustrated by examples of stochastic partial differential equations and delay equations, which arise in filtering problems for distributed and delay systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.