Abstract
The interplay between cellular growth and cell-cell signaling is essential for the aggregation and proliferation of bacterial colonies, as well as for the self-organization of cell tissues. To investigate this interplay, we focus here on the collective properties of dividing chemotactic cell colonies by studying their long-time and large-scale dynamics through a renormalization group (RG) approach. The RG analysis reveals that a relevant but unconventional chemotactic interaction —corresponding to a polarity-induced mechanism— is generated by fluctuations at macroscopic scales, even when an underlying mechanism is absent at the microscopic level. This emerges from the interplay of the well-known Keller-Segel (KS) chemotactic nonlinearity and cell birth and death processes. At one-loop order, we find no stable fixed point of the RG flow equations. We discuss a connection between the dynamics investigated here and the celebrated Kardar-Parisi-Zhang (KPZ) equation with long-range correlated noise, which points at the existence of a strong-coupling, nonperturbative fixed point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.