Abstract

A numerical analysis model is established to predict the stochastic dynamic characteristics of the rocket shell coupling system. The virtual springs are employed to deal with the boundary conditions and assemble the sub structures. Firstly, the energy functional expressions of the sub structures are deduced with the medium-thick shell theory. Thereafter the equivalent dynamic model of the rocket shell coupling system is obtained. With the consideration of the random acceleration load excitation, the stochastic dynamic responses of the rocket shell coupling system are derived by solving the analytical model with the spectro-geometric method. By comparing with the results obtained with other numerical methods, the effectiveness of the proposed equivalent analysis model is successfully verified. Last but not the least, the parametric analysis is carried out to investigate the influence of some core factors on the stochastic dynamic response of the rocket shell coupling system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.