Abstract

This paper deals with shape optimization for elastic materials under stochastic loads. It transfers the paradigm of stochastic dominance, which allows for flexible risk aversion via comparison with benchmark random variables, from finite-dimensional stochastic programming to shape optimization. Rather than handling risk aversion in the objective, this enables risk aversion by including dominance constraints that single out subsets of nonanticipative shapes which compare favorably to a chosen stochastic benchmark. This new class of stochastic shape optimization problems arises by optimizing over such feasible sets. The analytical description is built on risk-averse cost measures. The actual optimized cost functional measures the volume and perimeter of the structure. In the implementation, shapes are represented by a phase field which permits an easy estimate of a regularized perimeter. The analytical description and the numerical implementation of dominance constraints are built on risk-averse measures fo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.