Abstract

Solutions of portfolio optimization problems are often influenced by a model misspecification or by errors due to approximation, estimation and incomplete information. The obtained results, recommendations for the risk and portfolio manager, should be then carefully analyzed. We shall deal with output analysis and stress testing with respect to uncertainty or perturbations of input data for static risk constrained portfolio optimization problems by means of the contamination technique. Dependence of the set of feasible solutions on the probability distribution rules out the straightforward construction of convexity-based global contamination bounds. Results obtained in our paper [Dupačová, J., & Kopa, M. (2012). Robustness in stochastic programs with risk constraints. Annals of Operations Research, 200, 55–74.] were derived for the risk and second order stochastic dominance constraints under suitable smoothness and/or convexity assumptions that are fulfilled, e.g. for the Markowitz mean–variance model. In this paper we relax these assumptions having in mind the first order stochastic dominance and probabilistic risk constraints. Local bounds for problems of a special structure are obtained. Under suitable conditions on the structure of the problem and for discrete distributions we shall exploit the contamination technique to derive a new robust first order stochastic dominance portfolio efficiency test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.