Abstract

Stochastic differential games are considered in a non-Markovian setting. Typically, in stochastic differential games the modulating process of the diffusion equation describing the state flow is taken to be Markovian. Then Nash equilibria or other types of solutions such as Pareto equilibria are constructed using Hamilton--Jacobi--Bellman (HJB) equations. But in a non-Markovian setting the HJB method is not applicable. To examine the non-Markovian case, this paper considers the situation in which the modulating process is a fractional Brownian motion. Fractional noise calculus is used for such models to find the Nash equilibria explicitly. Although fractional Brownian motion is taken as the modulating process because of its versatility in modeling in the fields of finance and networks, the approach in this paper has the merit of being applicable to more general Gaussian stochastic differential games with only slight conceptual modifications. This work has applications in finance to stock price modeling which incorporates the effect of institutional investors, and to stochastic differential portfolio games in markets in which the stock prices follow diffusions modulated with fractional Brownian motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.