Abstract
In this paper, we propose a new adaptive single model to track a maneuvering target with abrupt accelerations. We utilize the stochastic differential equation to model acceleration of a maneuvering target with stochastic volatility (SV). We assume the generalized autoregressive conditional heteroscedasticity (GARCH) process as the model for the tracking procedure of the SV. In the proposed scheme, to track a high maneuvering target, we modify the Kalman filtering by introducing a new GARCH model for estimating SV. The proposed tracking algorithm operates in both the non-maneuvering and maneuvering modes, and, unlike the traditional decision-based model, the maneuver detection procedure is eliminated. Furthermore, we stress that the improved performance using the GARCH acceleration model is due to properties inherent in GARCH modeling itself that comply with maneuvering target trajectory. Moreover, the computational complexity of this model is more efficient than that of traditional methods. Finally, the effectiveness and capabilities of our proposed strategy are demonstrated and validated through Monte Carlo simulation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.