Abstract

Understanding water adsorption/desorption process through nanowindows provides new insights into membrane applications, supercapacitors and elucidation of biological ion separation mechanism. This study evidenced a new stochastic desorption mechanism of water molecules adsorbed inside highly pure single-wall carbon nanotube (SWCNT) through nanowindows, which evidently differs from conventional water desorption mechanism from carbon micropores. This new mechanism was clarified by the comparative analysis of water adsorption/desorption behaviors on endcap-closed SWCNT having nanowindows and endcap-open SWCNT without nanowindows. The water desorption for both open SWCNT samples was deeply associated with unique adsorbed water structures consisting of an ice-like adlayer akin to the graphene wall of SWCNT and core liquid-like water. Nanowindows destabilize the ice-like adlayer, leading to stochastic desorption of water molecules, followed by single-step desorption of adsorbed water through nanowindows of endcap-closed SWCNT having nanowindows. In contrast, water molecules are desorbed from ice-like adlayer and core liquid-like water separately for the endcap-open SWCNT without nanowindows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.