Abstract

We prove the existence of a unique local strong solution to the stochastic compressible Euler system with nonlinear multiplicative noise. This solution exists up to a positive stopping time and is strong in both the PDE and probabilistic sense. Based on this existence result, we study the inviscid limit of the stochastic compressible Navier–Stokes system. As the viscosity tends to zero, any sequence of finite energy weak martingale solutions converges to the compressible Euler system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.